
An O’small Interpreter

Based on

Denotational Semantics

Andreas V. Hense

Fachbereich 14

Universität des Saarlandes

Technischer Bericht Nr. A 07/91

Limited Distribution Notice

This report has been submitted for publication and will probably be copyrighted if ac-

cepted. It has been issued as a Research Report for early dissemination of its contents.

In view of the transfer of copyright to the publisher, its distribution prior to publication

should be limited to peer communication and specific requests.

An O’small Interpreter

Based on Denotational Semantics

Andreas V. Hense

Universität des Saarlandes

Im Stadtwald 15

6600 Saarbrücken 11, Germany

hense@cs.uni-sb.de

October 31, 1991

Abstract

An interpreter for the object-oriented programming language O’small is pre-

sented. It consists of a translation of a denotational semantics into the functional

programming language Miranda. A parser and the ftp-location of the relevant

files are also provided.

keywords: denotational semantics, interpreter, object-oriented programming

1 Introduction

When we call a problem trivial or a standard exercise it usually means that we don’t want

to solve it because there are – at least there should be – people for who it is easy to do. This

report contains the solution of the standard exercise:

Given the denotational semantics of a language

write an interpreter for it!

You may say “that’s not trivial at all, you need these clever techniques for writing efficient

interpreters, you have to think of the appropriate data structures,. . . ”. But who said it has

to be efficient? All we want is a prototype and we will see that with the choice of the right

implementation language there will be a one to one correspondence between the denotational

1

2

semantics and the interpreter. We can even say that if we have a denotational semantics we

get the interpreter for free. It is no secret that functional programming languages are best

suited for such a problem. We do not need imperative features and thus we are free to choose

between eager and lazy evaluation. Lazy evalutation has the advantage that e.g. the definition

of the fixed point operator is straightforward. For the interpreter we chose the functional

programming language Miranda1 [7]. The language to be interpreted is the object-oriented

programming language O’small [5], and thus the T-diagram for the interpreter is:

O’small

Miranda

O’small had originally been developed for semantic specification. It turned out that

there seems to be some consensus that O’small contains the essential features of an object-

oriented programming language with class inheritance. Gündel [2] wrote a structured oper-

ational semantics for it. Palsberg and Schwartzbach [6] independently developed a language

almost identical to O’small. This consensus and some interest in getting acquainted with

O’small by using it, have encouraged us to make the O’small-interpreter publicly avail-

able via ftp. This report tells you where to get the interpreter, and, to a certain extent,

how to use it. We also included the Miranda programs for readers who would just like to

know how the transformation from the meta language of denotational semantics to a func-

tional programming language is done. We apologize that the language, the system, and this

description are in such a prototypical state.

The following sections contain the source code of the interpreter in Miranda, the concrete

syntax of O’small, and a pointer to the location where the interpreter and the parser can

be retrieved by anonymous ftp.

2 Some comments on the interpreter files

Listings of the interpreter files can be found in section 3. A short introduction to the pro-

gramming language Miranda can be found in [7]. If you look for a more thorough introduction

to functional programming refer to [1]. To understand the interpreter files we suggest that

you compare the programs with the definitions and comments of the denotational semantics

paper [5]. Miranda is a strongly typed language and thus we must insert type constructors

that do not appear in the semantics. Also some of the simplifications to make the semantics

more readable must be made explicit.

The O’small-dialect of this interpreter uses explicit wrappers [4]. If you are not in-

terested in explicit wrappers and just want “classical” O’small you may just refer to [5]

1
Miranda is a trademark of Research Software Ltd..

3

and the following notice: Instead of writing one class declaration we need a wrapper and a

class declaration. In the following O’small-fragments, V represents a sequence of variable

declarations and M represents a sequence of method declarations.

class A subclassOf B def V in M ni

This is not accepted by this interpreter! Here, with explicit wrappers, a wrapperW is defined

in much the same way as a class before, except that it does not name a superclass.

wrapper W def V in M ni

The syntax and semantics of the modification, i.e. V and M , are as before. The class A

is defined as the wrapper W applied to the superclass B. The next program line is again

O’small-syntax.

class A W B

For brevity some of the O’small-examples in the papers use syntactical constructions

or primitive functions that are not accepted by this interpreter. For an exact specification

consult the concrete syntax in section 4.

The first interpreter file contains the syntactic domains (section 3.1, page 4). Lists are

written with brackets in Miranda and so a program consists of a constructor Program and a

list of wrapper declarations followed by a list of compound expressions. Primitive semantic

domains must now be implemented. For technical reasons there are special cases for methods

and messages without arguments, and some auxiliary functions.

The second file contains the semantic domains (section 3.2, page 5). The semantic do-

mains are a straightforward translation. Again primitive domains must be implemented.

The third interpreter file contains auxiliary functions and basic definitions (section 3.3,

page 6). The first auxiliary function is the generic function ⋆ used for the composition of

commands an declarations. In this semantics it appears with two different types, and thus

two functions x1 and x2 must be declared in Miranda. They are used as infix in the sequel

and are thus preceded by a dollar sign. Also for domain checking (D?) we need a collection

of functions: one for each domain. The store is implemented as a list, locations as natural

numbers. The first three locations in the store are already taken by the error flag, the input,

and the output. Some data type transformation functions . . . To. . . are needed, because we

work in a strongly typed language. This inconvenience is however more than compensated

by the advantage of static type inference. Finally there are basic functions for inheritance.

The last line is the definition of the fixed point operator. It is just defined by the property

that a fixed point f must have. This definition would look more complicated in a language

with eager evaluation because we would have to insert lambdas to prevent non-termination.

The last file contains the semantic functions (section 3.4, page 10). The semantic func-

tions contain many local declarations of functions called l or l1. These are necessary because

of the absence of a λ-construction in Miranda.

4

3 The interpreter files

3.1 The syntactic domains

ide == [char]

bas == num

binOp ::= Plus | Minus |

Mult | Div | Mod |

Le | Leq | Neq | Gr | Grq | Eq

pro ::= Program [w] [c]

w ::= Wrapper ide [v] [m] | Class ide ide ide

v ::= Var ide expr

m ::= Method ide [ide] [c]

c ::= Expr expr |

Ass ide expr |

Outp expr |

If expr [c] [c] |

While expr [c] |

Def v [c]

expr ::= New expr |

BinOp binOp expr expr |

Bas bas |

Sign binOp bas |

Read |

Sqrt expr |

Id ide |

Message ide ide [expr]

|| Auxiliary functions for nullary methods and messages

method0 ide cL = Method ide [] cL

message0 ide1 ide2 = Message ide1 ide2 []

|| Auxiliary function: in the abstract syntax generated by the parser

5

|| generator the empty list cannot be created because the empty expression

|| cannot be parsed. Therefore list with one element are created by the

|| function ’sing’.

sing :: * -> [*]

sing x = [x]

|| Auxiliary function: the concrete syntax allows lists of variables but

|| the abstract syntax allows only one. This function makes the transformation

|| because the parser (created by this generator) cannot do it.

def :: [v] -> [c] -> c

def [v] cList = Def v cList

def (v:rest) cList = Def v [(def rest cList)]

|| Auxiliary function: the parser generates constant names for ‘self’,

|| ‘super’, and ‘current’. We want to treat ‘self’, ‘super’, and ‘current’

|| as identifiers, and thus we need strings instead of constants. These

|| are defined here.

self = "self"

super = "super"

current = "current"

3.2 The semantic domains

%include "synDom.m"

loc == num

bv == num

env == ide -> dvu

file == [rv]

errStop ::= Error | Stop

ans == (file,errStop)

dv ::= Loc loc |

RvDv rv |

Meth meth |

Cl class |

6

Wr wrapper

dvu ::= Dv dv | Unbound

sv ::= File file | RvSv rv

rv ::= Bool bool | Bv bv | Obj env

store == [sv]

meth == [dv] -> store -> (dv,store)

class == stObject -> stObject

stObject == store -> (env,store)

wrapper == stObject -> class

3.3 Auxiliary functions

%include "synDom.m"

%include "semDom.m"

|| Functions of the basic definitions

||--

|| Make the self-distributing version of a binary operator [Hen91c,Def.3.3]

box :: (*->**->***)->(****->*)->(****->**)->****->***

box binaryOp g1 g2 = l where l s = (g1 s) $binaryOp (g2 s)

|| The record modification operator [Hen91c,Def.3.4]

triangle :: class -> stObject -> stObject

triangle w p = (w p) $specialPlus p

where specialPlus a b s

= (aEnv $plus bEnv ,aS)

|| the store aS contains the instance variables of w and p

where

(aEnv,aS) = a s

(bEnv,bS) = b s

|| [Hen91c,Def.3.2] the left preferential plus operator.

7

|| Combines environments such that the first one is preferred.

plus :: env -> env -> env

plus envNew envOld ide = envOld ide, envNew ide = Unbound

= envNew ide, otherwise

fix f = f(fix f)

|| Auxiliary functions (also compare [Gor79,pp50ff,70ff]).

||---

|| The star operator for the combination of functions:

|| It is defined in the appendix of "Wrapper Semantics of an

|| Object-Oriented Programming Language with State" LNCS 256 [Hen91c].

|| There are two alternatives for the type of the star operator.

|| For the upper case in the angular brackets in the paper we define

|| the auxiliary function ‘x1’ and for the second ‘x2’.

x1 :: (store -> (*,store)) -> (* -> store -> (**,store))

-> (store -> (**,store))

x1 f g s1 = (undef,s2), s2 $at err = RvSv(Bool True)

= g d2 s2, otherwise where (d2,s2) = f s1

x2 :: (* -> store -> (**,store)) -> (** -> store -> (***,store))

-> (* -> store -> (***,store))

x2 f g d1 s1 = (undef,s2), s2 $at err = RvSv(Bool True)

= g d2 s2, otherwise where (d2,s2) = f d1 s1

cond :: (*,*) -> dv -> *

cond (d1,d2) (RvDv (Bool True)) = d1

cond (d1,d2) (RvDv (Bool False)) = d2

cont :: dv -> store -> (sv,store) || no test on validity

cont (Loc l) s = (s $at l,s)

|| Functions corresponding to ‘D?’

isSv :: dv -> store -> (dv,store)

isSv (RvDv rv) = result (RvDv rv)

isSv dv = seterr

8

isDv :: dvu -> store -> (dv,store)

isDv (Dv dv) = result dv

isDv Unbound = seterr

isLoc, isBool,isRv, isObj, isMeth, isCl, isWr :: dv -> store -> (dv,store)

isRv (RvDv rv) = result (RvDv rv)

isRv rv = seterr

isLoc (Loc l) = result (Loc l)

isLoc dv = seterr

isBool (RvDv (Bool True)) = result (RvDv (Bool True))

isBool (RvDv (Bool False)) = result (RvDv (Bool False))

isBool dv = seterr

isObj (RvDv(Obj env)) = result (RvDv(Obj env))

isObj dv = seterr

isMeth (Meth m) = result(Meth m)

isMeth dv = seterr

isCl (Cl class) = result (Cl class)

isCl dv = seterr

isWr (Wr wrapper) = result (Wr wrapper)

isWr dv = seterr

|| End of functions corresponding to ‘D?’

deref :: dv -> store -> (dv,store)

deref (Loc location) s = (svToDv (s $at location),s)

deref (RvDv e) = result (RvDv e)

deref other s

= error(concat["deref ",show other,show s,"expected storable value"])

new :: store -> (loc,store)

new s = (firstFree s 0, s)

where

firstFree [] accLength = accLength

firstFree (h:t) accLength = firstFree t (accLength + 1)

|| firstFree determines the first free storage cell. There is no

9

|| error case, because we assume that the natural numbers, which

|| is the type of locations, are infinite.

result :: * -> store -> (*,store)

result d s = (d,s)

seterr :: store -> (*,store)

seterr s = (undef,upd s (RvSv (Bool True)) err)

update :: loc -> dv -> store -> (dv,store)

update loc = isSv $x2 l

where

l (RvDv e) s = ((RvDv e),upd s (RvSv e) loc)

|| Further auxiliary functions and auxiliary function to auxiliary functions

||--

|| The first three locations in the store are already occupied:

err = 0

inp = 1

out = 2

|| ‘at’ searches for a location in the store and returns the contents.

|| The case of the empty store should not occur.

at :: store -> loc -> sv

at (h:t) 0 = h

at (h:t) (l+1) = at t l

at [] = error "’at’: tried to get the contents of unused store"

|| Takes an identifier and a value (type dv) and returns a little

|| environment, where the identifier is bound to that value.

makeEnv :: ide -> dv -> env

makeEnv ide dv = l where l i = Dv dv, i = ide

= Unbound ,otherwise

|| upd s e l: puts in s at location l the value e instead of the old value

|| or append e to the store

upd :: store -> sv -> loc -> store

upd (h:t) sv 0 = (sv:t)

upd (h:t) sv (l+1) = h:(upd t sv l)

10

upd [] sv 0 = [sv]

upd [] sv n

= error(concat["upd: ",show sv,show n,"exceeded current extension of store"])

dvuToDv :: dvu -> dv

dvuToDv (Dv dv) = dv

dvuToDv Unbound = error"dvuToDv : identifier was Unbound in environment"

dvToSv :: dv -> sv

dvToSv (RvDv rv) = RvSv rv

dvToSv dv = error(concat["dvToSv ",show dv,"expected RvDv or Obj"])

svToDv :: sv -> dv

svToDv (RvSv rv) = RvDv rv

svToDv (File file)

= error(concat["svToDv ",show file," cannot convert File to dv"])

3.4 The semantic functions

%include "synDom.m"

%include "semDom.m"

%include "hilfsFun.m"

|| types of the semantic functions

evP :: pro -> file -> ans

evR, evE :: expr -> env -> store -> (dv,store)

evC :: c -> env -> store -> (dv,store)

evV :: v -> env -> store -> (env,store)

evW :: w -> env -> store -> (env,store)

evM :: m -> env -> env

evO :: binOp -> (rv,rv) -> store -> (dv,store)

evB :: bas -> bv

|| list of the semantic rules

evP (Program wl cl) input

= extractAns finalStore

where

extractAns s = (reverse outp,errSt(s $at err))

|| for efficiency the output is always put at the front of the list, such

|| that here a reversal of the list is necessary.

where

errSt (RvSv(Bool True)) = Error

11

errSt (RvSv(Bool False)) = Stop

File outp = s $at out

(wrClEnv,wrClS) = evWl wl initialEnv initialStore

(dv,finalStore) = evCl cl wrClEnv initialStore

initialStore = [RvSv(Bool False), File input, File []]

initialEnv = makeEnv "Base" (Cl base)

where base selfRef s = (emptyEnv,s)

where emptyEnv ide = Unbound

evR expr env = ((evE expr env) $x1 deref) $x1 isRv

evE (New expr) env

= ((evE expr env) $x1 isCl) $x1 makeObj

where makeObj (Cl c) s = (RvDv(Obj objEnv),newS)

where

(objEnv,newS) = (fix c) s

evE (BinOp binOp expr1 expr2) env

= (evR expr1 env) $x1 l1

where

l1 (RvDv e1)

= (evR expr2 env) $x1 l2

where

l2 (RvDv e2) = evO binOp (e1,e2)

l1 other = error(concat["evE Binop : expected R-value"])

evE (Bas bas) env = result (RvDv(Bv(evB bas))) || evB is the identity

evE (Sign binOp bas) env

= result(RvDv(Bv (res binOp)))

where

res Plus = (evB bas)

res Minus = 0 - (evB bas)

res op

= error(concat

["evE (Sign ",show binOp,show bas,") : expected Plus, Minus"])

evE Read env = (cont (Loc inp)) $x1 l

where l (File []) s = seterr s

l (File (h:t)) s = (RvDv h,upd s (File t) inp)

evE (Sqrt expr) env

= (evE expr env) $x1 sqRoot

where sqRoot (RvDv(Bv bas)) s = (RvDv(Bv(sqrt bas)),s)

sqRoot other s = error(concat["evE ",show expr," expected Bv"])

evE (Id ide) env = (result (env ide)) $x1 isDv

evE (Message objName messSel exprL) env

= ((evR (Id objName) env) $x1 isObj) $x1 l1

12

where

l1 (RvDv(Obj objEnv))

= ((result (dvuToDv(objEnv messSel))) $x1 isMeth) $x1 l2

where

l2 (Meth m)

= (evParams exprL []) $x1 m

where

evParams [] resultL s = (reverse resultL,s)

evParams (p:rest) resultL s = evParams rest (dv:resultL) newS

where

(dv,newS) = (evR p env) s

evC (Expr expr) = evE expr

evC (Ass id expr) env

= ((evE (Id id) env) $x1 isLoc) $x1 l

where

l (Loc location) = (evR expr env) $x1 (update location)

evC (Outp expr) env = (evR expr env) $x1 l

where

l (RvDv r) s = ((RvDv r),upd s (File (r:outp)) out)

where File outp = (s $at out)

evC (If expr cl1 cl2) env = ((evR expr env) $x1 isBool) $x1

cond(evCl cl1 env,evCl cl2 env)

evC (While expr cl) env

= ((evR expr env) $x1 isBool) $x1

cond((evCl cl env) $x1 l,result(RvDv(Bool False)))

where

l e = evC (While expr cl) env

evC (Def v cl) env = (evV v env) $x1 l

where l newEnv = evCl cl (newEnv $plus env)

evCl :: [c] -> env -> store -> (dv,store)

evCl (c:[]) = evC c

evCl (c:rest) env = (evC c env) $x1 l

where

l e = evCl rest env

evV (Var iden expr) env

= (evR expr env) $x1 l

where

l e = new $x1 l1

where

13

l1 location s

= (makeEnv iden (Loc location),upd s (dvToSv e) location)

evW (Class className wrapperName parentName)env

= ((evE (Id parentName) env) $x1 isCl) $x1 l1

where

l1 (Cl parent)

= ((evE(Id wrapperName) env) $x1 isWr) $x1 l2

where

l2 (Wr wrapper)

= result(makeEnv className(Cl ((box triangle) wrapper parent)))

evW (Wrapper wrapperName vl ml) env

= result(makeEnv wrapperName(Wr wrapper))

where

wrapper self super sCreate

= (evMl ml (((makeEnv "self" (RvDv(Obj selfEnv)))$plus

(makeEnv "super" (RvDv(Obj superEnv)))) $plus

(localEnv $plus (makeEnv "current" (Cl cur)) $plus env)),newS)

|| By combining the three environments we obtain encapsulation.

|| The instance variables of the ancestor classes are invisible.

|| They cannot be reached via ‘super’ because they are no methods.

where cur x = self

(localEnv,newS) = evVl vl env pS

(selfEnv,sS) = self sCreate ||store at object creation

(superEnv,pS) = super sCreate ||store at object creation

|| The store for the instance variable of the superclass is allocated by

|| ‘super’. The store for the new instance variables is allocated during

|| the evaluation of vl. We account for the instance variables of the

|| superclass by starting from ‘pS’; the changed store is called ‘newS’.

||

|| ‘self’ must be supplied with ‘sCreate’ in order to point to the right

|| instance variables. These instance variables are in ‘localEnv’ and

|| in the local environments of the superclasses.

|| ‘self’ is recursive and lazy evaluation is important here.

|| If one looked at ‘sS’ one would enforce complete evaluation of

|| ‘self sCreate’. This would lead to non-termination.

|| variable and class definitions are not mutually recursive

evVl :: [v] -> env -> store -> (env,store)

evVl [] env = result env

evVl (v:rest) env = (evV v env) $x1 l1

14

where l1 r1 = (evVl rest (r1 $plus env))

evWl :: [w] -> env -> store -> (env,store)

evWl [] env = result env

evWl (w:rest) env = (evW w env) $x1 l1

where l1 r1 = (evWl rest (r1 $plus env))

|| method definitions are not mutually recursive

|| because all recursion goes via ‘self’

evM(Method methName parNameL cl) env

= makeEnv methName (Meth body)

where body parL

= evCl cl (methEnv parNameL parL)

where

methEnv [] [] = env

methEnv (parName:pNL)(par:pL) = (makeEnv parName par)

$plus (methEnv pNL pL)

methEnv pNL pL

= error(concat

["number of actual and formal parameters differs in: ",

show methName])

evMl :: [m] -> env -> env

evMl [] env = env

evMl (m:rest) env = (evM m env) $plus (evMl rest env)

evO Plus (Bv n1,Bv n2) = result(RvDv(Bv(n1+n2)))

evO Minus (Bv n1,Bv n2) = result(RvDv(Bv(n1-n2)))

evO Mult (Bv n1,Bv n2) = result(RvDv(Bv(n1*n2)))

evO Div (Bv n1,Bv n2) = result(RvDv(Bv(n1 div n2)))

evO Mod (Bv n1,Bv n2) = result(RvDv(Bv(n1 mod n2)))

evO Le (Bv n1,Bv n2) = result(RvDv(Bool(n1 < n2)))

evO Leq (Bv n1,Bv n2) = result(RvDv(Bool(n1 <= n2)))

evO Neq (Bv n1,Bv n2) = result(RvDv(Bool(n1 ~= n2)))

evO Gr (Bv n1,Bv n2) = result(RvDv(Bool(n1 > n2)))

evO Grq (Bv n1,Bv n2) = result(RvDv(Bool(n1 >= n2)))

evO Eq (Bv n1,Bv n2) = result(RvDv(Bool(n1 = n2)))

evB = id

15

4 The concrete syntax of O’small

The O’small-version here contains explicit wrappers. The parser has been generated with

an ELL(2)-parser generator by Heckmann [3]. Letters are a,b,c,. . . ,z and A,B,C,. . . ,Z. Digits

are 0,1,2,. . . ,9. An identifier (iden) is a letter followed by letters or digits. A number is at

least one digit. Operators are divided into three classes:

mulop = ∗ | / | %

addop = + | −

relop = <|<=|<>|>|>=|=

They stand for the following functions:

operator type function

∗ num × num → num multiplication

/ num × num → num whole numbered division (div)

% num × num → num modulo (mod)

+ num × num → num addition

− num × num → num subtraction

< num × num → bool less

<= num × num → bool less or equal

<> num × num → bool not equal

> num × num → bool greater

>= num × num → bool greater or equal

= num × num → bool equal

The data type num consists of integers and floating-point numbers. There are the following

terminal symbols: read, output, if, then, else, fi, while, do, od, def, in, ni, var, meth,

program, class, wrapper, sqrt, new, self, super, current. Comments can either be

enclosed in braces ({. . . }) or in parentheses with a star ((*. . . *)). Nonterminals are written

with capital letters. Braces ({}), brackets ([]) and bars (|) are used as meta symbols and

denote optional elements, parentheses and alternatives respectively. The starting symbol

(axiom) is P. Keywords are written in bold typeface. The productions are:

16

P := WL CL { ; | . }

W := wrapper iden def VL in ML ni | class iden iden iden

V := var iden := E

M := meth iden ({PL}) CL

C := E | iden := E | output E | if E then CL else CL fi

| while E do CL od | def VL in CL ni

E := S | S relop S | new E

S := T | T addop S

T := B | B mulop T

B := num | addop num | sqrt (E)

| read | (E)

| current

| [self | iden] { . iden { (AL) } }

| super . iden { (AL) } }

CL, VL, WL, and ML are list constructions of C, V, W, and M respectively. PL are lists of

identifiers (iden). AL are lists of expressions (E). C are separated by semicolons (;). V, W,

and M may be separated by semicolons. Parameter lists and argument lists are separated

by commas.

Note that for some technical reasons (we have an LL-parser) the receiver of a message

must be a variable and cannot be a general expression.

Sometimes an example is better than many definitions. An example of a program that is

accepted by this parser is contained in figure 1. This program demonstrates the necessity to

program around some of the missing primitive functions and also shows the use of wrappers

instead of classes that was mentioned in section 2.

5 FTP distribution

To obtain the compiler by internet ftp, connect to host ftp.cs.uni-sb.de use login id ”anony-

mous” with your name as password. You will be in the directory /pub. Go to directory

/pub/osmall (”cd osmall”). Then put ftp in binary mode (”binary”) and ”get” the relevant

files in that directory.

Host: Net Address: Login: Passwd: Directory:

ftp.cs.uni-sb.de 134.96.7.254 anonymous Your name /pub/osmall

17

wrapper PointWrap

def var xComp := 0 var yComp := 0

in meth x() xComp

meth y() yComp

meth move(X,Y) xComp := X+xComp; yComp := Y+yComp

meth distFromOrg() sqrt(xComp*xComp + yComp*yComp)

meth closerToOrg(point) self.distFromOrg < point.distFromOrg

ni

class Point PointWrap Base

wrapper CircleWrap

def var radius := 0

in meth r() radius

meth setR(r) radius := r

meth distFromOrg()

def var d := super.distFromOrg - self.r

in if d > 0 then d else 0 fi ni

ni

class Circle CircleWrap Point

def var p := new Point

var c := new Circle

in p.move(2,2); c.move(3,3); c.setR(2);

output p.closerToOrg(c);

p.move(0,-2); c.move(0,-2);

output p.closerToOrg(c)

ni {result: false, false}

Figure 1: O’small program with points and circles in concrete syntax

The directory /pub/osmall contains a file named README that contains this information

and the compressed tar file osmall.0.1.tar.Z. It contains a directory called parser and a

directory called interpreter.

NOTE: Ftp should be put into binary mode before transferring the compressed tar file.

Here is a sample dialog:

ftp

ftp> open ftp.cs.uni-sb.de

Name: anonymous

Password: <your name>

ftp> binary

18

ftp> cd osmall

ftp> get README

ftp> get osmall.0.1.tar.Z

ftp> close

ftp> quit

After the files are transferred they should be uncompressed using the uncompress com-

mand and then extracted using tar into a directory called osmall. For example:

mkdir osmall

mv osmall.0.1.tar.Z osmall

cd osmall

uncompress -c osmall.0.1.tar.Z | tar xf -

will unpack the directories.

6 Running an O’small program

Go into the directory parser and type

make

An executable file called osmall will be the result. osmall is the parser. It is best called

with

osmall < ‘file1’ > ‘file2’

where file1 contains the O’small program and file2 will contain the abstract syntax of

this program. To use the program in abstract syntax in the Miranda-system it must be

declared as a value. Before it is declared the syntactic domains must be known. To run

the program the semantic functions, which rely on the semantic domains and the auxiliary

functions, must be known. The easiest way to run the program is to create a file called ex.m

with the contents:

%include "synDom.m"

%include "semDom.m"

%include "hilfsFun.m"

%include "semFun.m"

ex = ‘file2’

where ‘file2’ is the program in abstract syntax where you have removed the leading string

“ip”. Move the file ex.m to the directory interpreter, where the files synDom.m, semDom.m,

hilfFun.m, semFun.m are. Now call

mira ex

in the directory interpreter. You will get the Miranda prompt after the system has com-

piled everything. Then you may type

19

evP ex []

in the Miranda system if the input is empty. Otherwise you will write some input between

the brackets.

References

[1] R. Bird and P. Wadler. Introduction to Functional Programming. Prentice-Hall Interna-

tional Series in Computer Science. Prentice-Hall, 1988.

[2] A. Gündel. Objektorientierte Programmiersprachen. lecture notes by Gerd Lierhaus,

Universtät Dortmund, 1990.

[3] R. Heckmann. Manual for the ELL(2)-parser generator and tree generator generator.

Technical Report Doc.: S.1.1-R-2.1, European Strategic Programme for Research and

development in Information Technology, Aug. 1986. PROSPECTRA, Project Ref. No.

390.

[4] A. V. Hense. Denotational semantics of an object-oriented programming language with

explicit wrappers. Technical Report A 11/90, Universität des Saarlandes, Fachbereich

14, June 1990.

[5] A. V. Hense. Wrapper semantics of an object-oriented programming language with state.

In T. Ito and A. R. Meyer, editors, Theoretical Aspects of Computer Software, volume

526 of Lecture Notes in Computer Science, pages 548–568. Springer-Verlag, Sept. 1991.

[6] J. Palsberg and M. Schwartzbach. Object-oriented type inference. Technical Report

DAIMI PB-345, Aarhus University, Mar. 1991.

[7] D. Turner. Miranda: A non-strict functional language with polymorphic types. Lecture

Notes in Computer Science, 201:1–16, 1985. Functional Programming Languages and

Computer Architecture.

